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The classical monomer-dimer model in two-dimensional lattices has been shown to belong to the
“#P-complete” class, which indicates the problem is computationally “intractable.” We use exact computa-
tional method to investigate the number of ways to arrange dimers on m�n two-dimensional rectangular
lattice strips with fixed dimer density �. For any dimer density 0���1, we find a logarithmic correction term
in the finite-size correction of the free energy per lattice site. The coefficient of the logarithmic correction term
is exactly −1/2. This logarithmic correction term is explained by the newly developed asymptotic theory of
Pemantle and Wilson. The sequence of the free energy of lattice strips with cylinder boundary condition
converges so fast that very accurate free energy f2��� for large lattices can be obtained. For example, for a
half-filled lattice, f2�1/2�=0.633 195 588 930, while f2�1/4�=0.441 345 375 3046 and f2�3/4�=0.640 390 26.
For ��0.65, f2��� is accurate at least to ten decimal digits. The function f2��� reaches the maximum value
f2��*�=0.662 798 972 834 at �*=0.638 1231, with 11 correct digits. This is also the monomer-dimer constant
for two-dimensional rectangular lattices. The asymptotic expressions of free energy near close packing are
investigated for finite and infinite lattice widths. For lattices with finite width, dependence on the parity of the
lattice width is found. For infinite lattices, the data support the functional form obtained previously through
series expansions.
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I. INTRODUCTION

The monomer-dimer problem has received much attention
not only from statistical physics but also from theoretical
computer science. As one of the classical lattice statistical
mechanics models, the monomer-dimer model was first used
to describe the absorption of a binary mixture of molecules
of unequal sizes on crystal surface �1�. In the model, the
regular lattice sites are either covered by monomers or
dimers. The diatomic molecules are modeled as rigid dimers
which occupy two adjacent sites in a regular lattice and no
lattice site is covered by more than one dimer. The lattice
sites that are not covered by the dimers are regarded as oc-
cupied by monomers. A central problem of the model is to
enumerate the dimer configurations on the lattice. In 1961 an
elegant analytical solution was found for a special case of the
problem, namely when the planar lattice is completely cov-
ered by dimers �the close-packed dimer problem, or dimer-
covering problem� �2,3�. For the general monomer-dimer
problem where there are vacancies �monomers� in the lattice,
there is no exact solution. For three-dimensional lattices,
there is even no exact solution for the special case of the
close-packed dimer problem. One recent advance is an ana-
lytic solution to the special case of the problem in two-
dimensional lattices where there is a single vacancy at cer-
tain specific sites on the boundary of the lattice �4,5�. The
monomer-dimer problem also serves as a prototypical prob-
lem in the field of computational complexity �6�. It has been
shown that the two-dimensional monomer-dimer problem
belongs to the “#P-complete” class and hence is computa-
tionally intractable �7�.

Even though there is a lack of progress in the analytical
solution to the monomer-dimer problem, many rigorous re-

sults exist, such as series expansions �8–10�, lower and upper
bounds on free energy �11,12�, monomer-monomer correla-
tion function of two monomers in a lattice otherwise packed
with dimers �13�, locations of zeros of partition functions
�14,15�, and finite-size correction �16�. Some approximate
methods have also been proposed �17–20�. The monomer-
dimer constant hd �the exponential growth rate� of the num-
ber of all configurations with different number of dimers has
also been calculated �12,19�. By using sequential importance
sampling Monte Carlo method, the dimer covering constant
for a three-dimensional cubic lattice has been estimated �21�.
The importance of the monomer-dimer model also comes
from the fact that there is one-to-one mapping between the
Ising model and the monomer-dimer model: the Ising model
in the absence of an external field is mapped to the pure
dimer model �22–25�, and the Ising model in the presence of
an external field is mapped to the general monomer-dimer
model �14�.

The major purposes of this paper are �1� to show it is
possible to calculate accurately the free energy of the
monomer-dimer problem in two-dimensional rectangular lat-
tices at a fixed dimer density by using the proposed compu-
tational methods �Secs. II, IV, VI, and VII�, and �2� to use the
computational methods to probe the physical properties of
the monomer-dimer model, especially at the high dimer den-
sity limit �Sec. VIII�. The high dimer density limit is consid-
ered to be more difficult and more interesting than the low
dimer density limit. The major result is the asymptotic ex-
pression Eq. �24�. The third purpose of the paper is to intro-
duce the asymptotic theory of Pemantle and Wilson �26�,
which not only gives a theoretical explanation of the origin
of the logarithmic correction term found by computational
methods reported in this paper �Sec. III�, but also has the
potential to be applicable to other statistical models.

The following notation and definitions will be used
throughout the paper. The configurational grand canonical*Electronic address: matky@nus.edu.sg
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partition function of the monomer-dimer system in a m�n
two-dimensional lattice is

Zm,n�x� = aN�m,n�xN + aN−1�m,n�xN−1 + ¯ + a0�m,n� ,

�1�

where as�m ,n� is the number of distinct ways to arrange s
dimers on the m�n lattice, N= �mn /2�, and x can be taken as
the activity of a dimer. The average number of sites covered
by dimers �twice the average number of dimers� of this grand
canonical ensemble is given by

�m,n�x� =
2

mn

� ln Zm,n�x�
� ln x

=
2

mn

�
s=1

N

as�m,n�sxs

�
s=0

N

as�m,n�xs

. �2�

The limit of this average for large lattices is denoted as ��x�:
��x�=limm,n→��m,n�x�. In general we use �d�x� for the aver-
age number of sites covered by dimers in a d-dimensional
infinite lattice when the dimer activity is x.

The total number of configurations of dimers is given by
Zm,n�1� at x=1, and the monomer-dimer constant for a two-
dimensional infinite lattice is defined as

h2 = lim
m,n→�

ln Zm,n�1�
mn

. �3�

In general, we denote hd as the monomer-dimer constant for
a d-dimensional infinite lattice, and hd�x� as the grand poten-
tial per lattice site at any dimer activity x. For a two-
dimensional infinite lattice,

h2�x� = lim
m,n→�

ln Zm,n�x�
mn

. �4�

In this paper we focus on the number of dimer configura-
tions at a given dimer density �. In this sense we are working
on the canonical ensemble. The connection between the ca-
nonical ensemble and the grand canonical ensemble is dis-
cussed in Appendix A. We define the dimer density for the
canonical ensemble as the ratio

� =
2s

mn
. �5�

When the lattice is fully covered by dimers, �=1. For a m
�n lattice, the number of dimers at a given dimer density is
s= mn�

2 . In the following we use am,n��� as the number of
distinct dimer and monomer configurations at the given
dimer density �. By using this definition, Eq. �1� can be
rewritten as

Zm,n�x� = �
0���1

am,n���xmn�/2. �6�

The free energy per lattice site at a given dimer density � is
defined as

fm,n��� =
ln am,n���

mn

and the free energy at a given dimer density for a semi-
infinite lattice strip ��n is

f�,n��� = lim
m→�

ln am,n���
mn

= lim
m→�

fm,n��� .

For infinite lattices where both m and n go to infinity, the
free energy is

f2��� = f�,���� = lim
m,n→�

ln am,n���
mn

= lim
n→�

f�,n��� .

We use the subscript d in fd��� to indicate the dimension of
the infinitely large lattice. From the exact result �2,3� we
know f2��� at �=1

f2�1� =
G

	
= 0.291 560 904,

where G is the Catalan’s constant. For other values of �

0, no analytical result is known, although several bounds
are developed �11,12�. We will show below that by using the
exact calculation method developed previously �27–29�, we
can calculate f2��� at an arbitrary dimer density � with high
accuracy.

The paper is organized as follows. In Sec. II, the compu-
tational method is outlined. In Sec. III, we show a logarith-
mic correction term in the finite-size correction of fm,n��� for
any fixed dimer density 0���1. The coefficient of this
logarithmic correction term is exactly −1/2, for both cylin-
der lattices and lattices with free boundaries. We give a the-
oretical explanation for this logarithmic correction term and
its coefficient using the newly developed asymptotic theory
of Pemantle and Wilson �26�. In this section we point out the
universality of this logarithmic correction term with a coef-
ficient of −1/2. This term is not unique to the monomer-
dimer model: a large class of lattice models has this term
when the “density” of the models is fixed. More discussions
of applications of this asymptotic method to the monomer-
dimer model in particular, and statistical models in general,
can be found in Sec. IX. In Sec. IV we calculate f�,n��� on
lattice strips ��n for n=1, . . . ,17 with cylinder boundary
condition. The sequence of f�,n��� on cylinder lattices con-
verges very fast so that we can obtain f2��� quite accurately.
To the best of our knowledge, the results presented here are
the most accurate for a monomer-dimer problem in two-
dimensional rectangular lattices at an arbitrary dimer density.
In Sec. V similar calculations of f�,n��� are carried out on
lattice strips ��n with free boundaries for n=1, . . . ,16.
Compared with the sequence with cylinder boundary condi-
tion, the sequence f�,n��� with free boundaries converges
slower. In Sec. VI, the position and values of the maximum
of f2��� are located: f2��*�=0.662 798 972 834 at �*

=0.638 1231. These results give an estimation of the
monomer-dimer constant with 11 correct digits. The previous
best result is with nine correct digits �12�. The results are
also compared with those obtained by series expansions and
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field theoretical methods. The maximum value of f2��� is
equal to the two-dimensional monomer-dimer constant h2.
This is one special case of the more general relations be-
tween the calculated values in the canonical ensemble and
those in the grand canonical ensemble, and these relations
are further discussed in Appendix A. In Sec. VII, the rela-
tions developed in Appendix A are used to compare the re-
sults of the computational method presented in this paper
with those of Baxter �19�. For the monomer-dimer model,
the more interesting properties are at the more difficult high
dimer density limit. In Sec. VIII asymptotic behavior of the
free energy f�,n��� is examined for high dimer density near
close packing. For lattices with finite width, a dependence of
the free energy f�,n��� on the parity of the lattice width n is
found �Eq. �22��, consistent with the previous results when
the number of monomers is fixed �29�. The combination of
the results in this section and those of Sec. III leads to the
asymptotic expression Eq. �24� for near close packing dimer
density. The asymptotic expression of f2���, the free energy
on an infinite lattice, is also investigated near close packing.
The results support the functional forms obtained previously
through series expansions �9�, but quantitatively the value of
the exponent is lower than previously conjectured. In Appen-
dix B we put together in one place various explicit formulas
for the one-dimensional lattices �n=1�. These formulas can
be used to check the formulas developed for the more gen-
eral situations where n
1. As an illustration, an explicit
application of the Pemantle and Wilson asymptotic method is
also given for n=1.

II. COMPUTATIONAL METHODS

The basic computational strategy is to use exact calcula-
tions to obtain a series of partition functions Zm,n�x� of lattice
strips m�n. Then for a given dimer density �, fm,n��� can be
calculated using arbitrary precision arithmetic. By fitting
fm,n��� to a given function �Secs. IV, V, and VIII�, f�,n��� can
be estimated with high accuracy. From f�,n���, f2��� can then
be estimated using the special convergent properties of the
sequence f�,n��� on the cylinder lattice strips �Sec. IV�.

A. Calculation of the partition functions

The computational methods used here have been de-
scribed in detail previously �27–29�. The full partition func-
tions �Eq. �1�� are calculated recursively for lattice strips on
cylinder lattices and lattices with free boundaries. As before,
all calculations of the terms as�m ,n� in the partition func-
tions use exact integers, and when logarithm is taken to cal-
culate free energy fm,n���, the calculations are done with pre-
cisions much higher than the machine floating-point
precision. The bignum library used is GNU MP library
�GMP� for arbitrary precision arithmetic �version 4.2� �30�.
The details of the calculations on lattices with free bound-
aries can be found in Ref. �28�, so in the following only
information on cylinder lattices is given.

For a m�n lattice strip, a square matrix Mn is set up
based on two rows of the lattice strip with proper boundary
conditions. The vector �m, which consists of the partition

function of Eq. �1� as well as other contracted partition func-
tions �27�, is calculated by the following recurrence

�m = Mn�m−1. �7�

A similar recursive method has also been used for other
combinatorial problems, such as calculation of the number
of independent sets �31�. For a cylinder lattice strip, the ma-
trix Mn is constructed in a similar way as that with free
boundaries �28�. The total valid number �vc�n�� and unique
number �uc�n�� of configurations are given, respectively,
by the generating function �nvc�n�xn=x�3+x−x3� / �1−3x
−x2� / �x−1� / �x+1� and the formula

uc�n� = �
d\n

��d�2n/d

2n
+ �2�n−1�/2 if n odd

2n/2−1 + 2n/2−2 if n even,
�

where ��m� is Euler’s totient function, which gives the num-
ber of integers relatively prime to integer m. The size of
matrix Mn is uc�n��uc�n�. The first 17 terms of the sequence
vc�n� are 3, 10, 36, 118, 393, 1297, 4287, 14 158, 46 764,
154 450, 510 117, 1 684 801, 5 564 523, 18 378 370,
60 699 636, 200 477 278, and 662 131 473. The first 17
terms of the sequence uc�n� are 2, 3, 4, 6, 8, 13, 18, 30, 46,
78, 126, 224, 380, 687, 1224, 2250, and 4112. It is noted that
the sequence uc�n� is exactly the same as that shown in col-
umn 2, Table 1 of Ref. �12�. Calculations based on the domi-
nant eigenvalues of the matrices of the cylinder lattice strips
for n=4, 6, 8, and 10 are carried out by Runnels �32�. The
sizes of Mn for cylinder lattice strips are smaller when com-
pared with the corresponding numbers for lattice strips with
free boundaries �28�, which allows for calculations on wider
lattice strips. For cylinder lattice strips, full partition func-
tions are calculated for n=1, . . . ,17, with length up to m
=1000 for n=1, . . . ,13, m=880 for n=14, m=669 for n
=15, m=474 for n=16, and m=325 for n=17. The corre-
sponding numbers for lattice strips with free boundaries are
reported in Ref. �28�.

B. Interpolation for arbitrary dimer density �

In this paper the main quantity to be calculated is f2���.
The starting point of the calculations is the full partition
function Eq. �1� for different values of n and m. Finite values
of n and m only lead to discrete values of dimer density �, as
defined in Eq. �5�. For example, when n=7 and m=11, the
number of dimers s takes the values of 0, 1,…, 38, and dimer
density � of this lattice can only be one of the following
values: 0 ,2 /77, . . . ,76/77. In general, for fixed finite m and
n, � can only be a rational number:

� =
p

q
,

where p and q are positive integers. When � is expressed as
a rational number, the number of dimers is given by

s =
mn�

2
=

mnp

2q
. �8�

This expression is only meaningful if mnp can be divided by
2q. When we write the grand canonical partition function in
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the form of Eq. �6� for finite m and n, we implicitly imply
that Eq. �8� is satisfied.

In the following we use the rational dimer density �
= p /q whenever possible so that the value of am,n��� can be
read directly from the partition function of m�n lattices.
Depending on the values of p and q, some dimer densities,
such as �=1/2, can be realized in many lattices, while others
can only be realized in a small number of lattices with spe-
cial combinations of values of m and n. In many situations it
becomes impossible to use rational �. For example, in Sec.
VI the location of the maximum of f2��� is searched within a
very small region of �, and in Sec. VII, in order to compare
the results from different methods, � takes the output values
of other computational methods �19�. In such situations, if
the rational form of � were used, p and q would become so
big that not enough data points which satisfy Eq. �8� could
be found for the fitting in the m�n lattice strip. To calculate
fm,n��� for an arbitrary real number � �0���1�, interpola-
tion of the exact data points is needed. Since full partition
functions have been calculated for fairly long lattice strips,
proper interpolation procedure can yield highly accurate val-
ues of fm,n��� for an arbitrary real number �. For interpola-
tion, we use the standard Bulirsch-Stoer rational function
interpolation method �33,34�. For any real number �, Eq. �8�
is used to calculate the corresponding number of dimers s,
which may not be an integer. On each side of this value of s,
30 exact values of as�m ,n� are used �if possible� in the in-
terpolation. If on one side there are not enough exact data
points of as�m ,n�, extra data points on the other side of s are
used to make the total number of exact data points as 60. For
the high dimer density case �Sec. VIII�, the total number of
data points used is changed to 30. We also take care that no
extrapolation is used: if � is greater than the maximum dimer
density for a given m�n lattice, the data point from this
lattice is not used. Let us look at the above example of the
11�7 lattice again. For this lattice, the highest dimer density
is 76/77. If calculation is done for a dimer density �=0.99,
since �=0.99 is greater than 76/77�0.987, the data point
from this lattice will not be used in the following steps to
avoid inaccuracy introduced by unreliable extrapolations.

C. Fitting procedure

The fitting experiments are carried out by using the “fit”
function of software GNUPLOT �version 4.0� �35� on a 64
-bit Linux system. The fit algorithm implemented is the non-
linear least-squares �NLLS� Levenberg-Marquardt method
�36�. All fitting experiments use the default value 1 as the
initial value for each parameter, and each fitting experiment
is done independently. As done previously �28,29�, only
those am,n��� with m100 are used in the fitting. Since
am,n��� is calculated for relatively long lattice strips �in the m
direction, see Sec. II A�, the estimates of f�,n��� are usually
quite accurate, up to 12 or 13 decimal places. The accuracy
for this fitting step is limited by the machine floating-point
precision, since GNUPLOT uses machine floating-point repre-
sentations, instead of arbitrary precision arithmetic. We
would have used the GMP library to implement a fitting
program with arbitrary precision arithmetic. This would in-

crease the accuracy in the estimation of f2��� when � is
small. For the major objective of this paper, i.e., to investi-
gate the behavior of f2��� when �→1 �Sec. VIII�, however,
the current accuracy is adequate. At high dimer density limit,
the convergence of f�,n��� towards f2��� is much slower than
at low dimer density limit. With lattice width n�17 used for
the current calculations, f�,n��� is far from converging to the
machine floating-point precision when �→1.

III. LOGARITHMIC CORRECTIONS OF THE FREE
ENERGY AT FIXED DIMER DENSITY

For lattice strips m�n with a fixed width n and a given
dimer density �, the coefficients am,n��� of the partition func-
tions are extracted to fit the following function:

fm,n��� =
ln am,n���

mn
= c0 +

c1

m
+

c2

m2 +
c3

m3 +
c4

m4 +
�

n

ln�m + 1�
m

,

�9�

where c0= f�,n���.
For both cylinder lattices and lattices with free bound-

aries, the fitting experiments clearly show that �=−1/2, ac-
curate up to at least six decimal places, for any dimer density
0���1. This result holds for both odd n and even n. This is
in contrast with the results reported earlier for the situation
with a fixed number of monomers �or vacancies�, where the
logarithmic correction coefficient depends on the number of
monomers present and the parity of the width of the lattice
strip �28,29�. We notice that a coefficient −1/2 also appears
in the logarithmic correction term of the free energy studied
in Ref. �4�, which is a special case of the monomer-dimer
problem where there is a single vacancy at certain specific
sites on the boundary of the lattice.

For the general monomer-dimer model, to our best knowl-
edge, this logarithmic correction term with a coefficient of
exactly −1/2 has not been reported before in the literature.
The recently developed multivariate asymptotic theory by
Pemantle and Wilson �26�, however, gives an explanation of
this term and its coefficient. This theory applies to combina-
torial problems when the multivariate generating function of
the model is known. For univariate generating functions,
asymptotic methods are well-known and have been used for
a long time. The situation is quite different for multivariate
generating functions. Until recently, techniques to get
asymptotic expressions from multivariate generating func-
tions were “almost entirely missing” �for a review, see Ref.
�26��. The newly developed Pemantle and Wilson method
applies to a large class of multivariate generating functions
in a systematic way. In general the theory applies to gener-
ating functions with multiple variables, and for the bivariate
case that we are interested in here, the generating function of
two variables takes the form

F�x,y� =
G�x,y�
H�x,y�

= �
s,m=0

�

asmxsym, �10�

where G�x ,y� and H�x ,y� are analytic, and H�0,0��0. In
this case, the Pemantle and Wilson method gives the
asymptotic expression as
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asm 	
G�x0,y0�


2	
x0

−sy0
−m
− y0Hy�x0,y0�

mQ�x0,y0�
, �11�

where �x0 ,y0� is the positive solution to the two equations

H�x,y� = 0, mx
�H

�x
= sy

�H

�y
, �12�

and Q�x ,y� is defined as

− �xHx��yHy�2 − �yHy��xHx�2 − ��yHy�2�x2Hxx�

+ �xHx�2�y2Hyy� − 2�xHx��yHy��xyHxy�� .

Here Hx, Hy, etc. are partial derivatives �H /�x, �H /�y, and
so on. One of the advantages of the method over previous
ones is that the convergence of Eq. �11� is uniform when s /m
and m /s are bounded.

For the monomer-dimer model discussed here, with n as
the finite width of the lattice strip, m as the length, and s as
the number of dimers, we can construct the bivariate gener-
ating function F�x ,y� as

F�x,y� = �
m=0

�

�
s=0

mn/2

as�m,n�xsym = �
m=0

�

Zm,n�x�ym. �13�

For the monomer-dimer model, as well as a large class of
lattice models in statistical physics, the bivariate generating
function F�x ,y� is always in the form of Eq. �10�, with
G�x ,y� and H�x ,y� as polynomials in x and y. In fact, we can
get H�x ,y� directly from matrix Mn in Eq. �7�. It is closely
related to the characteristic function of Mn �27�: H�x ,y�
=det�Mn− I /y��yw, where w is the size of the matrix Mn. As

an illustration, the bivariate generating function F�x ,y� for
the one-dimensional lattice �n=1� is shown in Eq. �B10� of
Appendix B.

When the dimer density is fixed, which is the case dis-
cussed here, s=�mn /2. If we substitute this relation into Eq.
�12�, then we see that the solution �x0 ,y0� of Eq. �12� only
depends on � and n, and does not depend on m or s. Substi-
tuting this solution �x0��� ,y0���� into Eq. �11� we obtain

fm,n��� 	 −
1

n
ln�x0

�n/2y0� −
1

2

ln m

mn

+
1

mn
ln�G�x0,y0�
− y0Hy�x0,y0�

2	Q�x0,y0�
� . �14�

From this asymptotic expansion we obtain the logarithmic
correction term with a coefficient of −1/2 exactly, for any
value of n. In fact, this asymptotic theory predicts that there
exists such a logarithmic correction term with coefficient of
−1/2 for a large class of lattice models when the two vari-
ables involved are proportional, that is, when the models are
at fixed “density.” For those lattice models which can be
described by bivariate generating functions, this logarithmic
correction term with coefficient of −1/2 is universal when
those models are at fixed “density.” For the monomer-dimer
model, this proportional relation is for s and m with s
=�mn /2. An explicit calculation for n=1 is shown in Appen-
dix B.

For a fixed dimer density � and a fixed lattice width n, the
first term of Eq. �14� is a constant and does not depend on m.
We identify it as f�,n���

TABLE I. The coefficient c0 �f�,n���� for different n and � on cylinder lattice strips ��n. The numbers in parentheses are the number
of data points used in the fitting. The first row for n=1 is from the exact expression Eq. �B4�. The last column is from the exact expression
Eq. �17� when �=1. Rational � is used here and no interpolation of am,n��� is used.

1 /4 1/2 3/4 1 1

1 0.358851778502358 0.477385626221110 0.420632291880785 0.000000000000000

1 0.358851778501632 �113� 0.477385626220963 �226� 0.420632291880650 �113� 3.6259082842339e−31 �451� 0.000000000000000

2 0.443539035661245 �226� 0.643863506776599 �451� 0.675072579831534 �226� 0.440686793509790 �901� 0.440686793509772

3 0.441243226869578 �113� 0.632058256526847 �226� 0.634554086596250 �113� 0.261133206162104 �451� 0.261133206162069

4 0.441350608415009 �451� 0.633331866235995 �901� 0.641840174628945 �451� 0.329239474231224 �901� 0.329239474231204

5 0.441345086182334 �113� 0.633177665529326 �226� 0.640045538037963 �113� 0.280932225367582 �451� 0.280932225367553

6 0.441345392065621 �226� 0.633198099780748 �451� 0.640485680552428 �226� 0.307299539523143 �901� 0.307299539523125

7 0.441345374298049 �113� 0.633195220523869 �226� 0.640363389854116 �113� 0.286180041989361 �451� 0.286180041989328

8 0.441345375366775 �901� 0.633195644943681 �901� 0.640398267527096 �901� 0.300105275372022 �901� 0.300105275372003

9 0.441345375300735 �113� 0.633195580174568 �226� 0.640387826199450 �113� 0.288315256713912 �451� 0.288315256713877

10 0.441345375304906 �226� 0.633195590329820 �451� 0.640391026472015 �226� 0.296935925720006 �901� 0.296935925719986

11 0.441345375304640 �113� 0.633195588702860 �226� 0.640390021971380 �113� 0.289391267149380 �451� 0.289391267149350

12 0.441345375304658 �451� 0.633195588968099 �901� 0.640390342494518 �451� 0.295260881552885 �901� 0.295260881552868

13 0.441345375304658 �113� 0.633195588924235 �226� 0.640390238745032 �113� 0.290008735546277 �451� 0.290008735546247

14 0.441345375304656 �196� 0.633195588931575 �391� 0.640390272712621 �196� 0.294265803657058 �781� 0.294265803657028

15 0.441345375304652 �71� 0.633195588930329 �143� 0.640390261482688 �71� 0.290395631458758 �285� 0.290395631458698

16 0.441345375304640 �375� 0.633195588930530 �375� 0.640390265226077 �375� 0.293625491565320 �375� 0.293625491565145

17 0.441345375304620 �28� 0.633195588930470 �57� 0.640390263969286 �28� 0.290653983951606 �113� 0.290653983951281
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f�,n��� = −
1

n
ln�x0

�n/2y0� . �15�

In all the following fitting experiments, we set �=−1/2
for Eq. �9�.

IV. CYLINDER LATTICES

For the monomer-dimer problem at a given dimer density
� in cylinder lattice strips, the sequence f�,n��� converges
very fast to f2���, as can be seen from a few sample data in
Table I. In the table, values of f�,n��� for �=1/4, 1 /2, 3 /4,
and 1 are listed. Two obvious features can be observed: �1�
The function f�,n��� is an increasing function of odd n, but a
decreasing function of even n. Furthermore, for finite integer
values of h and k,

f�,2h��� 
 f2��� 
 f�,2k+1��� . �16�

The value f�,n��� oscillates around the limit value f2��� from
even n to odd n. �2� The smaller the value of �, the faster the
rate of convergence of f�,n��� towards f2���. Rational values
of � are used for the calculations in Table I and no interpo-
lation of am,n��� is used. The numbers of data points used in
the fitting are listed in parentheses.

As a check of the accuracy of the results, the data at �
=1 can be compared with the exact solution. For a cylinder
lattice strip ��n, the exact expression for f�,n�1� reads as
�2�

f�,n�1� =
1

n
ln 

i=1

n/2 �sin
�2i − 1�	

n
+ �1 + sin2 �2i − 1�	

n
�1/2� .

�17�

The results from Eq. �17� are listed as the last column in
Table I. As mentioned in the previous section, all input data
are exact integers and the logarithm of these integers is taken
with high precision before the fitting. The only places where
accuracy can be lost are in the fitting procedure as well as the
approximation introduced by the fitting function Eq. �9�.
Comparisons of the data in the last two columns of Table I
show that, as far as the fitting procedure is concerned, the
calculation accuracy is up to 12 or 13 decimal places.

Another check for the accuracy of the fitting procedure is
through the exact expression Eq. �B4� of a one-dimensional
strip �n=1� at various dimer density �. The data are listed in
the first row of Table I. By using Eq. �15� of the Pemantle
and Wilson asymptotic method, we can also compare the
fitting results with exact asymptotic values for small values
of n �data not shown�. All these checks confirm consistently
that the accuracy of the fitting procedure is up to 12 or 13
decimal places. See Sec. IX for further discussions on this
issue.

The fast convergence of f�,n��� and the property of Eq.
�16� make it possible to obtain f2��� quite accurately, espe-
cially when � is not too close to 1. Some of the values of
f2��� at rational �= p /q for small p and q are listed in Table
II. As in Table I, no interpolation of am,n��� is used. The
numbers in square brackets indicate the next digits for n

=16 �upper bound� and n=17 �lower bound�. The data show
that when ��0.65, the f2��� is accurate up to at least ten
decimal places. It should be pointed out that the data listed
are just raw data, showing digits that have already converged
for n=16 and 17. If the pattern of convergence of these raw
data is explored and an extrapolation technique is used, as is
done in Sec. VI, it is possible to get even more correct digits.
As shown in Sec. VI, the true value of f2��� is not the aver-
age of f�,16��� and f�,17���. Instead, it should lie closer to
f�,17���.

V. LATTICES WITH FREE BOUNDARIES

We also carry out similar calculations for lattice strips on
m�n two-dimensional lattices with free boundaries, for n
=2, . . . ,16. A few sample data are shown in Table III. In the
table, values of f�,n

fb ��� for �=1/4, 1 /2, 3 /4, and 1 are listed.
The data in Table III show that the sequence of f�,n

fb ��� in
lattices with free boundaries converges slower than that in
cylinder lattices. Furthermore, in contrast to the situation in
cylinder lattices, f�,n

fb ��� is an increasing function of n for 0
���1: f�,n

fb ��� approaches f2��� �the same value as that for
cylinder lattices� monotonically from below. When �=1, the
functions f�,2k

fb �1� and f�,2k+1
fb �1� are increasing functions,

TABLE II. List of f2��� for different �. Numbers in square
brackets indicate the next digits for n=16 �upper bound� and n
=17 �lower bound�. Rational � is used here and no interpolation of
am,n��� is used.

� f2���

0 0

1/20 0.1334362263587

1/10 0.229899144084�8–9�
3/20 0.310823643168�1–2�
1/5 0.380638530252�1–2�
1/4 0.4413453753046

3/10 0.4940275921700

1/3 0.525010031447�5–6�
7/20 0.539305666744�5–6�
2/5 0.5775208675757

9/20 0.6088200746799

1/2 0.633195588930�4–5�
11/20 0.650499726669�5–8�
3/5 0.66044120984�2–5�
13/20 0.6625636470�2–4�
2/3 0.661425713�7–8�
7/10 0.65620036�0–1�
3/4 0.64039026�3–5�
4/5 0.6137181�3–4�
17/20 0.573983�2–3�
9/10 0.51739�1–2�
19/20 0.435�8–9�
1 0.29�0–3�
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with f�,2k
fb �1�
 f�,2k−1

fb �1� and f�,2k
fb �1�
 f�,2k+1

fb �1�. Due to the
slow convergence rate and the lack of property like Eq. �16�,
it is difficult to obtain f2��� reliably from the data on the
lattice strips with free boundaries.

As we did in the previous section, we also take advantage
of the known exact solution for �=1 as a check for the nu-
merical accuracy of the fitting procedure. The exact result for
lattice strips with free boundaries is given by �2�

f�,n
fb �1� =

1

n
ln�

i=1

n/2 �cos
i	

n + 1
+ �1 + cos2 i	

n + 1
�1/2�� .

�18�

The last column in Table III lists the values given by Eq.
�18�, which can be compared with the calculated values from
the fitting experiments in the column next to it. Again, as
shown in the previous section, the accuracy at �=1 is up to
11 or 12 decimal places for most of the values of n.

VI. MAXIMUM OF FREE ENERGY AND
THE MONOMER-DIMER CONSTANT

It is well-known that fd��� is a continuous concave func-
tion of � and at certain dimer density �*, fd��� reaches its
maximum �37�. However, there is no analytical knowledge
of the location ��*� and value �fd��*�� of the maximum for
d
1. As is shown in Appendix A, the maximum of fd��� is
equal to the monomer-dimer constant: fd��*�=hd. Currently
the best value for h2 is given in Ref. �12�, which gives h2
=0.662 798 9727±0.000 000 0001, with nine correct digits.
The location of the maximum, �*, is controversial. Baxter
gives the value of �*=0.638 123 11 �19�, while Friedland and
Peled state, “it is reasonable to assume that the value p*, for
which �2�p*�=h2, is fairly close to p�2�= �9−
17�� 8

�0.6096118” �here the original notation is used: p is our �
and �2�p� is our f2���� �12�.

In this section we use the same computational procedure
described in the previous sections to locate accurately the
maximum of f2���. Using rational dimer density �= p /q and
choose appropriate p and q, we can locate the maximum to a
fairly small region, as shown in Fig. 1.

With the interpolated data for am,n���, we can locate �*

and f2��*� more accurately. As shown in Figs. 2 and 3, we
find that

0.662 798 972 831 � f2��*� � 0.662 798 972 845,

where the value of f�,n��� for n=16 is used as the upper
bounds, and that for n=17 as the lower bounds. From Figs.
2–4, we can locate �* as

0.638 123 10 � �* � 0.638 123 12.

The values of f�,n��� around �* are listed in Table IV.
Inspection of the convergent rate of these data for even and
odd values of n suggests that for both sequences, the conver-
gent rate is geometric. If we assume that

f�,n��� = f2��� − ��n, �19�

then the data points at �=0.638 123 11 of n=12, 14, and
16 can be used to obtain an extrapolated value of
f2���=0.662 798 972 8336, while the data points of n=13,
15, and 17 give another extrapolation value f2���
=0.662 798 972 8341. Together these two extrapolation val-
ues converge to f2��*�=0.662 798 972 834, with 11 correct
digits.

We can also get the same conclusion graphically from
Fig. 3. By inspecting the pattern of the data points of differ-
ent values of n in the inset of Fig. 3, we notice that the
difference between the data points of n=14 and n=16 is

TABLE III. The coefficient c0 �f�,n
fb ���� for different n and � on lattice strips ��n with free boundaries. The numbers in parentheses are

the number of data points used in the fitting. The last column is from the exact expression Eq. �18� when �=1. Rational � is used here and
no interpolation of am,n��� is used.

1 /4 1/2 3/4 1 1

2 0.406768721898144 �101� 0.567460205873414 �201� 0.550618824275690 �101� 0.240605912529824 �401� 0.240605912529802

3 0.418805029581931 �50� 0.589202338098224 �101� 0.577814537070212 �50� 0.219492982820793 �201� 0.219492982820803

4 0.424677898377694 �201� 0.600481083876114 �401� 0.593860234282314 �201� 0.260998208772619 �401� 0.260998208772539

5 0.428121453697918 �50� 0.607125402184205 �101� 0.603150396985283 �50� 0.252922288709197 �201� 0.252922288709162

6 0.430386238446347 �101� 0.611530695170404 �201� 0.609386552832152 �101� 0.269862305348313 �401� 0.269862305348238

7 0.431988836086132 �50� 0.614662382427737 �101� 0.613828224552787 �50� 0.265557149993036 �201� 0.265557149992917

8 0.433182588323077 �401� 0.617003233867274 �401� 0.617157805951205 �401� 0.274751610011806 �401� 0.274751610011700

9 0.434106231271596 �50� 0.618819152717284 �101� 0.619745522952440 �50� 0.272072662436541 �201� 0.272072662436436

10 0.434842114982272 �101� 0.620268892851619 �201� 0.621814606701445 �101� 0.277844105572086 �401� 0.277844105571997

11 0.435442204742419 �50� 0.621453058127923 �101� 0.623506740930563 �50� 0.276016066623932 �201� 0.276016066623911

12 0.435940910510948 �201� 0.622438494443121 �401� 0.624916337018327 �201� 0.279975752031904 �401� 0.279975752031819

13 0.436361922501114 �39� 0.623271352033866 �78� 0.626108703477498 �39� 0.278648778924217 �155� 0.278648778924210

14 0.436722083762241 �26� 0.623984518924941 �51� 0.627130461956123 �26� 0.281534000787684 �101� 0.281534000780413

15 0.437033697160078 �13� 0.624602065315795 �26� 0.628015783739589 �13� 0.280526932170974 �51� 0.280526932164772

16 0.437305958542365 �44� 0.625142013068189 �44� 0.628790285827699 �44� 0.282722754819597 �44� 0.282722752409010
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bigger than the difference between n=15 and n=17. This
indicates that the true value of f2��*� lies closer to the data
point of n=17 than the data point of n=16. From Fig. 3 we
are quite sure that the eleventh digit of f2��*� is 3 instead of
4, and the twelfth digit is probably 4, as indicated by the two
extrapolation values mentioned above.

The value of f2��*� is in excellent agreement with that
reported in Ref. �12�, which gives nine correct digits �Fried-
land and Peled also guess correctly the tenth digit as 8�. The
value also agrees with that in Ref. �19�, which gives eight
correct digits �12�. The value of �* is exactly that of Baxter
�19�.

By using the field theoretical method, Samuel uses the
following relation to transform the activity x into a new vari-
able � �10�:

x =
�

�1 − 4��2 . �20�

This relation is very close to the one used by Nagle �8�. By
substituting this relation into Gaunt’s series expansions �9�,

Samuel obtained new series for various lattices, including the
rectangular lattice �Eq. �5.12� of Ref. �10��. The value of the
monomer-dimer constant in the two-dimensional rectangular
lattice can be calculated at x=1 by using his series as
0662 799 14. As we can see, this only gives five correct dig-
its. Nagle used the following transform �8�

x =
�

�1 − 3��2 . �21�

By using Gaunt’s series, a value of 0662 7988 is obtained,
with six correct digits.

To conclude this section, we compare our results on the
maximum of f2��� with the approximate formulas of Chang
�17� and Lin and Lai �18�. The Chang’s approximate formula
is given below:

f2
C��� = −

1

2
�4 ln 4 − �4 − ��ln�4 − �� + � ln �

+ 2�1 − ��ln�1 − �� − 2� ln 4� ,

FIG. 1. �Color online� The function of f2��� in
the region of 19/20���9/14. All data points
use rational �, so no interpolation is used.

FIG. 2. �Color online� The function of f�,n���
in the region of 0.638 110���0.638 130 for n
=16 �upper curve� and n=17 �lower curve�.
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which gives �*=0.634 641 and f2��*�=0.661 355. The ap-
proximate formula of Lin and Lai is

f2
LL��� = −

�

2
ln

�

2
− 0.9030�1 − ��ln�1 − �� − 0.056 45� ,

which gives �*=0.638 057 and f2��*�=0.662 822 35. Al-
though the two formulas are quite simple, they give effective
approximation with respect to �* and f2��*�.

VII. COMPARISON WITH BAXTER’S RESULTS

Using a variational approach, Baxter calculated h2�x�
�which is ln � using his notation� and ��x� �which is 2� by
his notation� for different values of dimer activity x �s2 by his
notation�. By using Eqs. �A4� and �A5�, we can compare our
results with Baxter’s results in his Table II. For each of his
data points at a dimer activity x, we calculate f2��� with �

=��x�. Then his h2�x� is converted to f2
B���=h2�x�− �

2 ln�x�.
The comparisons are shown in Table V. It should be pointed
out that in Baxter’s data, extrapolation is used for the se-

quence to obtain ��x� and h2�x� when x−1/2 is small �x−1/2

�0.3 for h2�x� and x−1/2�0.5 for ��x��, while no extrapola-
tion is used in our data: we only look at the digits that have
been converged for n=16 and 17. Although the extrapolation
used in Baxter’s data makes the comparison less direct, we
still see that the agreement is excellent. It seems that Bax-
ter’s method converges faster for � very close to 1 �again the
extrapolation factor has to be considered�, and our method is
more accurate when � is not too close to 1. As in Sec. IV, we
only present the raw data here. If extrapolation is used, more
correct digits can be obtained.

VIII. HIGH DIMER DENSITY NEAR CLOSE PACKING

It is well-known that the phase transition for the
monomer-dimer model only occurs at �=1 �14�. Since the
close-packed dimer system is at the critical point, it is inter-
esting to investigate the behavior of the model when �→1.
Using the similar computational procedure outlined before,
the following results are obtained at the high dimer density
limit:

FIG. 3. �Color online� The function of f�,n���
in the region of 0.638 1221���0.638 1239 for
n=16 �upper curve� and n=17 �lower curve�. In
the inset the data points from n=14 and 15 are
also shown. From top to bottom in the inset: n
=14, 16, 17, and 15.

FIG. 4. �Color online� The function of f�,n���
in the region of 0.638 123 01���0.638 123 19
for n=16.
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f�,n��� 	 f�,n
lattice�1� + �− �1 − ��ln�1 − �� n is odd

−
1

2
�1 − ��ln�1 − �� n is even, �

�22�

where f�,n
lattice�1� is the free energy of close-packed lattice with

width n, and is given, based on the boundary condition, by
Eq. �17� �cylinder lattices� or Eq. �18� �lattices with free
boundary condition�. Equation �22� for n=1 is verified from
the exact result as shown in Eq. �B5�. The result is also
confirmed for other values of n by using the Pemantle and
Wilson asymptotic methods for multivariate generating func-
tion, as described in Sec. III. For space limitation these con-
firmations are not presented in this paper.

The dependence of the asymptotic form of f�,n��� on the
parity of the lattice width n as shown in Eq. �22� reminds us
of the results reported previously for the monomer-dimer
model with a fixed number of monomers v �29�, in which the
coefficient of the logarithmic correction term of the free en-
ergy depends on the parity of the lattice width n. These two
results are consistent with each other. If we substitute the
relation v= �1−��mn into Eq. �22�, we will get the logarith-
mic correction term with coefficient v for odd n, and v /2 for
even n. More discussions about this asymptotic form will be
found in Sec. IX �Eq. �24��.

We also investigate the behavior of f2��� �for infinite lat-
tice� as �→1. Since f�,n��� does not converge fast enough as
�→1 �Table I�, we use a weighted average of f�,16��� and
f�,17��� as an approximation of f2���. The weights are calcu-
lated from the exact results at �=1. Fitting these data to the
following function,

f2��� = G/	 +
�

2
�1 − ��ln�1 − �� + b1�1 − �� , �23�

we obtain ��1.697 75 and b1�0.427 832. No other reason-
able form of functions other than Eq. �23� gives better fit.
Including a term of �1−��2 in Eq. �23� leads to only slight
changes in the values of � and b1. The data and the fitting
result are shown in Fig. 5.

Using the equivalence between statistical ensembles dis-
cussed in Appendix A, we can relate our results with Gaunt’s
series expansions �9�. Plugging f2��� as in Eq. �23� into
f���+ �

2 ln�x� �see Eq. �A1��, differentiating with respect to �,
and solving for �, we obtain the average dimer density ��x�
at the activity x. Expressing x as a function of �, we have

x =
e2b1−�

�1 − ��� .

This is in the same form of Eq. �3.7� of Gaunt �9�. If we put
in the values of � and b1, we can estimate the amplitude A
=exp�2b1−��=0.4308. Gaunt obtains through series expan-
sions �=1.73±4 and A=0.3030±4, and conjectures that �
=7/4. Our results support the same functional form, and the
numerical values are close to these obtained by Gaunt’s se-
ries analysis. As for the conjectured value of �, the current
data seem to indicate a value lower than 7/4. In fact, the data
presented here as well as theoretical arguments �not shown
here� indicate that �=5/3. More discussion on this constant
can be found in the next section.

IX. DISCUSSION

In Sec. III we show by computational methods that there
is a logarithmic correction term in the free energy with a
coefficient of −1/2. By introducing the newly developed Pe-
mantle and Wilson asymptotic method, we give a theoretical
explanation of this term. We also demonstrate that this term

TABLE IV. The coefficient c0 �f�,n���� for different n and � on cylinder lattice strips ��n around �*. The numbers in parentheses are
the number of data points used in the fitting.

0.63812309 0.63812310 0.63812311 0.63812312

1 0.470643631091106 �880� 0.470643628559868 �880� 0.470643626028629 �880� 0.470643623497390 �880�
2 0.683451694063943 �901� 0.683451695019491 �901� 0.683451695975038 �901� 0.683451696930585 �901�
3 0.659839104062378 �901� 0.659839103873019 �901� 0.659839103683659 �901� 0.659839103494298 �901�
4 0.663319985040839 �901� 0.663319985089007 �901� 0.663319985137175 �901� 0.663319985185343 �901�
5 0.662701144811933 �901� 0.662701144800592 �901� 0.662701144789251 �901� 0.662701144777910 �901�
6 0.662818978977777 �901� 0.662818978980627 �901� 0.662818978983477 �901� 0.662818978986327 �901�
7 0.662794695257766 �901� 0.662794695257048 �901� 0.662794695256327 �901� 0.662794695255611 �901�
8 0.662799924786436 �901� 0.662799924786622 �901� 0.662799924786807 �901� 0.662799924786992 �901�
9 0.662798754939549 �901� 0.662798754939501 �901� 0.662798754939453 �901� 0.662798754939404 �901�
10 0.662799023857733 �901� 0.662799023857746 �901� 0.662799023857758 �901� 0.662799023857771 �901�
11 0.662798960670265 �901� 0.662798960670262 �901� 0.662798960670259 �901� 0.662798960670256 �901�
12 0.662798975775941 �901� 0.662798975775943 �901� 0.662798975775944 �901� 0.662798975775944 �901�
13 0.662798972113454 �901� 0.662798972113453 �901� 0.662798972113445 �901� 0.662798972113451 �901�
14 0.662798973011855 �781� 0.662798973011855 �781� 0.662798973011855 �781� 0.662798973011855 �781�
15 0.662798972789303 �570� 0.662798972789304 �570� 0.662798972789304 �570� 0.662798972789303 �570�
16 0.662798972844882 �375� 0.662798972844882 �375� 0.662798972844883 �375� 0.662798972844883 �375�
17 0.662798972830869 �226� 0.662798972830871 �226� 0.662798972830870 �226� 0.662798972830869 �226�
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is not unique to the monomer-dimer model. Many statistical
lattice models can be cast in the form of bivariate �or multi-
variate� generating functions, and when the two variables are
proportional to each other so that the system is at a fixed
“density,” we will expect such a universal logarithmic cor-
rection term with coefficient of −1/2. We anticipate more
applications of this asymptotic method in statistical physics
in the future.

The Pemantle and Wilson asymptotic method not only
gives a nice explanation of the logarithmic correction term
and its coefficient found by computational means, but also
gives exact numerical values of f�,n��� for small n �the width

of the lattice strips�. These exact values can be used to check
the accuracy of the computational method, as already men-
tioned in Sec. IV. In Sec. III we discuss how this can be
done. The denominator H�x ,y� of the bivariate generating
functions is derived from the characteristic function of the
matrix Mn, and the size of Mn is given by uc�n� in Sec. II for
cylinder lattices, and in Ref. �28� for lattices with free bound-
aries. For small n, the size of Mn is small enough so that the
characteristic function can be calculated symbolically. As n
increases, however, the size of Mn increases exponentially:
uc�17�=4112 for cylinder lattice when n=17, and ufb�16�
=32 896 for lattice with free boundaries when n=16. It is

TABLE V. Comparison with Baxter’s results. Numbers in square brackets indicate the next digits for n
=16 �upper bound� and n=17 �lower bound�.

x−1/2 � f2��� f2
B���

0.00 1.0 0.29�0–3� 0.291557

0.02 0.994176 0.319�2–8� 0.3194631

0.05 0.9836216 0.355�0–2� 0.35510683

0.10 0.96456376 0.4047�5–8� 0.404771005

0.20 0.924706050 0.4810�8–9� 0.4810887477

0.30 0.8846581140 0.536892�1–4� 0.5368922350

0.40 0.8453815864 0.5782845�2–9� 0.5782845477

0.50 0.8072764728 0.608814�3–4� 0.6088143934

0.60 0.7705280966 0.63085609�6–8� 0.6308560970

0.80 0.7013863228 0.655894637�3–5� 0.6558946374

1.00 0.6381231092 0.6627989728�3–4� 0.6627989726

1.50 0.5042633294 0.6349499289380�4–9� 0.6349499290

2.00 0.4006451804 0.5779686472227�1–4� 0.5779686472

2.50 0.3211782498 0.5140847735884�4–6� 0.5140847737

3.00 0.2603068980 0.4528361791290�7–9� 0.4528361790

3.50 0.2134739142 0.3978378948658�1–3� 0.3978378949

4.00 0.17715243204 0.3499573614350�0–2� 0.3499573615

4.50 0.14869898092 0.3088705309099�2–6� 0.3088705306

5.00 0.126162903820 0.273811439807�1–2� 0.2738114398

FIG. 5. �Color online� Fitting result for f2���
as �→1.
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currently impractical to calculate the characteristic functions
symbolically from matrices of such sizes to get H�x ,y� of the
corresponding bivariate generating functions, so the Pe-
mantle and Wilson method cannot be applied when the width
of the lattice n becomes larger. Even when H�x ,y� is avail-
able, it is of the order of thousands or higher, which will lead
to instabilities in the numerical calculations. The computa-
tional method utilized here, however, can still give important
and accurate data in these situations.

Previously we demonstrated that when the monomer
number v or the dimer number s are fixed, there is also a
logarithmic correction term in the free energy �28,29�. When
the number of dimers is fixed �low dimer density limit�, the
coefficient of this term is equal to the number of dimers.
When the number of monomers is fixed �high dimer density
limit�, the coefficient, however, depends on the parity of the
lattice width n: it equals v when n is odd, and v /2 when n is
even. In this high dimer density limit, as m→�, dimer den-

sity �→1. In this paper we focus on the situation where the
dimer density is fixed, and find that again there is a logarith-
mic correction term, but this time its coefficient equals −1/2
and does not depend on the parity of the lattice width. Why
does the dependence of the coefficient on the parity of the
lattice width disappear as dimer density �→1 and the lattice
becomes almost completely covered by the dimers?

This seemingly paradoxical phenomenon can be ex-
plained as follows. When the number of monomer v is fixed
and as m→�, if we can put v= �1−��mn into Eq. �22�, then
the term of �1−��ln�1−�� leads to a term of v ln m / �mn�
when n is odd, and a term of v ln m / �2mn� when n is even.
At the same time, the logarithmic correction term with −1/2
as coefficient �−ln m / �2mn��, the second term in Eq. �14�,
gets canceled out by a term of −ln�1−�� / �2mn� from the
third term in Eq. �14� as m→� and �→1. Putting Eqs. �14�
and �22� together, we have for finite n, as m→� and �→1,

fm,n��� 	 f�,n
lattice�1� + �− �1 − ��ln�1 − ��

−
1

2
�1 − ��ln�1 − �� �−

1

2mn
ln m −

1

2mn
ln�1 − ��

n is odd

n is even.
�24�

This expression can be checked with the explicit formulas
for one-dimensional lattice, Eqs. �B2� and �B5�. By using the
relation v= �1−��mn, we see from Eq. �24� that as m→�,
when the monomer number v is fixed, the dependence of the
logarithmic correction term on the parity of n comes from
the second term in the equation; the third and fourth terms
cancel each other out. On the other hand when the dimer
density � is fixed, the only logarithmic correction term
comes from the third term of Eq. �24�, with coefficient −1/2.

As n→�, f2��� also has a term of �1−��ln�1−�� �Eq.
�23��, whose coefficient is estimated as −0.85 �Sec. VIII�.
This value is closer to −5/6=−0.83 than to the conjectured
value −7/8=−0.875 by Gaunt �9�. Runnels’ result, however,
seems to be closer to Gaunt’s result �32�. It should be recog-
nized that, as pointed out previously �8–10,19,32� as well
as in the present work, the convergence is poorest whe
n the dimer density is near close packing. On the other hand,
theoretical calculations underway �not shown here due
to space limitation� indeed indicate that this coefficient of
�1−��ln�1−�� for the infinite lattice is −5/6, or equivalently,
�=5/3.

It is well-known that there is a one-to-one correspondence
between the Ising model in a rectangular lattice with zero
magnetic field and a fully packed dimer model in a decorated
lattice �22,23�. By using a similar method �14�, it has been
shown that the Ising model in a nonzero magnetic field, a
well-known unsolved problem in statistical mechanics, can
be mapped to a monomer-dimer model with dimer density
��1. The investigation of the monomer-dimer model near
close packing is of interest within this context.

As mentioned in Sec. VI, several authors have applied
field theoretic methods to analyze the monomer-dimer model
�for example, Ref. �10��. In such studies, the monomer-dimer
problem is expressed as a fermionic field theory. For a close-
packed dimer model, the expression is a free field theory
with quadratic action, which is exactly solvable as expected.
For a general monomer-dimer model, the expression is an
interacting field theory with a quartic interaction term, and
self-consistent Hartree approximation is used to improve the
Feynman rules to derive the series expansions. The trans-
forms that are obtained using these methods �such as Eq.
�20�, which is similar to Eq. �21�� make the series expansions
converge in the full range of the dimer activity. The accuracy
of these calculations, however, is not comparable to the ac-
curacy of the computational method reported here, possibly
due to the limited length of the series expansion.

APPENDIX A: EQUIVALENCE OF STATISTICAL
ENSEMBLES

Throughout the paper our focus is on the functions
fm,n���, f�,n���, or f2��� at a given dimer density �. These
functions are in essence properties of the canonical en-
semble. In this Appendix we make the connection between
f2��� and the functions of ��x� and h2�x� as defined in Eqs.
�2� and �4�, which are properties of the grand canonical en-
semble. The results are used in Sec. VIII to compare the
results of near close packing dimer density with Gaunt’s se-
ries analysis, and in Sec. VII to compare our results with
those of Baxter, whose calculations are carried out in terms
of ��x� and h2�x� �19�.
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Suppose at �=�* the summand am,n���xmn�/2 in Eq. �6�
reaches its maximum. By using the standard thermodynamic
equivalence between different statistical ensembles ��38�,
Chap. 4� we have

h2�x� = lim
m,n→�

ln Zm,n�x�
mn

= lim
m,n→�

ln �
0���1

am,n���xmn�/2

mn

= lim
m,n→�

ln am,n��*�xmn�*/2

mn
= f2��*� +

�*

2
ln x . �A1�

In other words, if we define F2�� ,x�= f2���+ �
2 ln x, then

h2�x� = max
0���1

� f2��� +
�

2
ln x� = max

0���1
F2��,x� . �A2�

As a special case, the monomer-dimer constant is the maxi-
mum of the function f2��� by setting x=1

h2 = max
0���1

f2��� = f2��*� . �A3�

The connection for the average dimer coverage can also be
obtained by using Eqs. �2� and �A1� as

��x� = lim
m,n→�

�m,n�x� = lim
m,n→�

2

mn

� ln Zm,n�x�
� ln x

= �*�x�

�A4�

with the understanding that at �*, F2�� ,x�= f2���+ �
2 ln x, not

f2���, reaches its maximum. Substituting Eq. �A4� into Eq.
�A1�, we obtain

h2�x� = f2���x�� +
��x�

2
ln x . �A5�

In Sec. VI, the excellent agreement of our result of f2��*�
with the result on h2 of Friedland and Peled �12� has already
been demonstrated. In Ref. �12�, what is calculated is actu-
ally h2. Equation �A3� makes it possible to compare our re-
sult with that of Friedland and Peled. Equation �A3� is
proved as a theorem for the specific monomer-dimer problem
in Ref. �12� as Theorem 4.1.

Since there is an analytical solution to the one-
dimensional lattice problem, Eqs. �A1� and �A4� can be con-
firmed for the one-dimensional lattice by explicit calcula-
tions, as shown in Appendix B.

APPENDIX B: EXPLICIT RESULTS FOR ONE-
DIMENSIONAL LATTICE

In this Appendix we summarize some exact results for the
one-dimensional lattice �n=1� which are useful to compare
and check the results for lattices with width n
1. When n
=1, the problem is a special case of the so-called “parking
problem” in one-dimensional lattice in which a k-mer covers
k consecutive lattice sites in a nonoverlapping way. Various
methods exist which lead to closed form solutions to the
general case of interacting k-mers �for example, see Refs.
�39,40��. For the monomer-dimer model, k=2 and there is no

interaction between the dimers. The number of ways to put s
dimers in the m�1 lattice is known as

am,1�s� = �m − s

s
� . �B1�

From this expression, in the next section we derive the
asymptotic expression of the free energy by using the tradi-
tional method. As an illustration, later we also give an ex-
plicit demonstration of Pemantle and Wilson’s asymptotic
method as it is applied to the bivariate generating function.

1. Canonical ensemble

From the explicit expression of Eq. �B1�, we can get the
asymptotic expression of the free energy by using the
Stirling formula when 0���1:

fm,1��� =
ln am,1�s�

m
= f�,1��� −

1

2m
ln m +

1

2m
ln

2 − �

��1 − ��

+ �
j=1

�
22j−2B2j

j�2j − 1�m2j� 1

�2 − ��2j−1 −
1

�2j−1

−
1

22j−1�1 − ��2j−1� �B2�

= f�,1��� −
1

2m
ln�m + 1� +

1

2m
ln

2 − �

��1 − ��

+ �
j=1

�
1

m2j� 22j−2B2j

j�2j − 1�� 1

�2 − ��2j−1 −
1

�2j−1

−
1

22j−1�1 − ��2j−1� +
1

2�2j − 1�� − �
j=1

�
1

4jm2j+1 ,

�B3�

where

f�,1��� = �1 −
�

2
�ln�1 −

�

2
� −

�

2
ln

�

2
− �1 − ��ln�1 − ��

�B4�

and B2j are the Bernoulli numbers.
From Eqs. �B2� and �B3� it is evident that for n=1, the

coefficient of the logarithmic correction term is �=−1/2 for
0���1.

The asymptotic expression of f�,1��� �Eq. �B4�� at �=1 is
given by

f�,1��� 	 − �1 − ��ln�1 − �� − �ln 2 − 1��1 − ��

− �
i=1

�1 − ��2i+1

2i�2i + 1�
. �B5�

From this asymptotic expression we can see that the coeffi-
cient of �1−��ln�1−�� is exactly −1, as in Eq. �22� for odd
values of n. By combining Eqs. �B2� and �B5� together we
confirm Eq. �24� for n=1 at high dimer density limit.
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2. Grand canonical ensemble

In this section we calculate various quantities associated
with the grand canonical ensemble. The configurational
grand canonical partition function �Eq. �1�� is

Zm,1�x� = �
s=0

m/2 �m − s

s
�xs.

To get a closed form of Zm,1�x�, we use the WZ method
�Wilf-Zeilberger� �41� to get the following recurrence of
Zm,1�x�:

xZm,1�x� + Zm+1,1�x� − Zm+2,1�x� = 0,

from which we obtain the closed form solution as

Zm,1�x� =
1


1 + 4x
��1

m+1 − �2
m+1� , �B6�

where

�1,2 =
1 ± 
1 + 4x

2
.

To calculate ��x� using Eq. �2�, we need to evaluate the sum

S�m� = �
s=0

m/2 �m − s

s
�sxs.

Again by using the WZ method, we obtain the following
recurrence for S�m�:

�m + 2�xS�m� + �m + 1�S�m + 1� − mS�m + 2� = 0.

To solve this recurrence, we use the generating function of
S�m�: GS�z�=�mS�m�zm, and get GS�z� from the recurrence
as

GS�z� =
xz2

�1 − z − xz2�2 .

From GS�z� a closed form expression of S�m� can be found
as

S�m� =
x

1 + 4x��m −
1


1 + 4x
��1

m + �m +
1


1 + 4x
��2

m� .

�B7�

Substituting Eqs. �B6� and �B7� into Eq. �2�, we obtain

�1�x� = 1 −
1


1 + 4x
. �B8�

Using Eq. �B6� we can calculate h1�x� as

h1�x� = lim
m→�

ln Zm,1�x�
m

= ln
1 + 
1 + 4x

2
. �B9�

It is known that there are multiple methods to solve the
one-dimensional lattice model. For example, the transform
matrix method can also be used �42�. In this case, the trans-
form matrix is

T1 = �0 x

1 1
� ,

whose eigenvalues are �1,2= �1±
1+4x� /2. As m→�,
Zm,1�x�	�1

m, so we obtain h1�x� as Eq. �B9�. From �1�x�
=2� ln �1 /� ln x we obtain Eq. �B8�.

3. Equivalence of statistical ensembles

The confirmation of the equivalence of ensembles for the
special case of x=1 �Eq. �A3�� has been done in Ref. �12�.
Here we carry out the explicit calculations for the general
case of arbitrary dimer activity x.

If we take the derivative of function F1�� ,x�= f1���
+ �

2 ln x, where f1���= f�,1��� is given in Eq. �B4�, solve for
�, and retain only the solution in �0, 1�, we have

�* = 1 −
1


1 + 4x
,

which is the same as Eq. �B8�. If we put the value of �* into
F1�� ,x�, we obtain the maximum of F1��* ,x�:

max
0���1

� f1��� +
�

2
ln x� = ln

1 + 
1 + 4x

2
= h1�x� .

4. Application of Pemantle and Wilson asymptotic method
to the bivariate generating function

The bivariate generating function of Eq. �13� can also be
obtained in multiple ways, for example by direct summation
of Eq. �B6�, or by using the characteristic function of M1, or
by using Eq. �23� of Ref. �40� �by setting the interaction
parameter �=1 and the size of the k-mer as 2�, to get

F1�x,y� =
1

1 − y − xy2 . �B10�

Here G�x ,y�=1 and H�x ,y�=1−y−xy2. Solving the two
equations in Eq. �12� we get �x0 ,y0� as �x0=s�m−s� / �m
−2s�2, y0= �m−2s� / �m−s��. Substituting �x0 ,y0� into Eq.
�11� we obtain

am,1 	
1


2	
�m − s�m−s+1/2�m − 2s�−m+2s−1/2�s�−s−1/2.

By putting s=�m /2, the first three terms of Eq. �B2� are
recovered, including the term of logarithmic correction
−ln m / �2m�. Higher order terms can also be obtained if more
terms of the asymptotic expressions are used �26�.
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